147 research outputs found

    Fine-specificity of cytotoxic T lymphocytes which recognize conserved epitopes of the Gag protein of human immunodeficiency virus type 1

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) Gag-specific cytotoxic T lymphocyte (CTL) responses were studied in seven seropositive long-term asymptomatic individuals (CDC A1)with stable CD4 counts for more than 8 years. Using a set of partially overlapping peptides covering the whole Gag, five 15-20-mer peptides were found to contain CTL epitopes. Further characterization of these epitopes revealed a new HLA-A25-restricted CTL epitope in p24, p24203-212 ETINEEAAEW. This region of Gag highly conserved in clades B and D of HIV-1. Naturally occurring amino acid sequences, containing p24203D (consensus HIV-1 clades A, C, F, G and H) or p24204I(HIV-2(ROD)) were not recognized by CTL recognizing the index peptide. No virus variants with mutations in this sequence were found in peripheral blood mononuclear cells from the HIV-1-infected individual concerned during the 8 year observation period, indicating that the virus had not escaped from the observed CTL response.</p

    Highlights of the 11th International Bordetella Symposium: from Basic Biology to Vaccine Development

    Get PDF
    ABSTRACT Pertussis is a severe respiratory disease caused by infection with the bacterial pathogen Bordetella pertussis . The disease affects individuals of all ages but is particularly severe and sometimes fatal in unvaccinated young infants. Other Bordetella species cause diseases in humans, animals, and birds. Scientific, clinical, public health, vaccine company, and regulatory agency experts on these pathogens and diseases gathered in Buenos Aires, Argentina from 5 to 8 April 2016 for the 11th International Bordetella Symposium to discuss recent advances in our understanding of the biology of these organisms, the diseases they cause, and the development of new vaccines and other strategies to prevent these diseases. Highlights of the meeting included pertussis epidemiology in developing nations, genomic analysis of Bordetella biology and evolution, regulation of virulence factor expression, new model systems to study Bordetella biology and disease, effects of different vaccines on immune responses, maternal immunization as a strategy to prevent newborn disease, and novel vaccine development for pertussis. In addition, the group approved the formation of an International Bordetella Society to promote research and information exchange on bordetellae and to organize future meetings. A new Bordetella.org website will also be developed to facilitate these goals

    Stable isotope tagging of epitopes: a highly selective strategy for the identification of major histocompatibility complex class I-associated peptides induced upon viral infection.

    Get PDF
    Identification of peptides presented in major histocompatibility complex (MHC) class I molecules after viral infection is of strategic importance for vaccine development. Until recently, mass spectrometric identification of virus-induced peptides was based on comparative analysis of peptide pools isolated from uninfected and virus-infected cells. Here we report on a powerful strategy aiming at the rapid, unambiguous identification of naturally processed MHC class I-associated peptides, which are induced by viral infection. The methodology, stable isotope tagging of epitopes (SITE), is based on metabolic labeling of endogenously synthesized proteins during infection. This is accomplished by culturing virus-infected cells with stable isotope-labeled amino acids that are expected to be anchor residues (i.e. residues of the peptide that have amino acid side chains that bind into pockets lining the peptide-binding groove of the MHC class I molecule) for the human leukocyte antigen allele of interest. Subsequently these cells are mixed with an equal number of non-infected cells, which are cultured in normal medium. Finally peptides are acid-eluted from immunoprecipitated MHC molecules and subjected to two-dimensional nanoscale LC-MS analysis. Virus-induced peptides are identified through computer-assisted detection of characteristic, binomially distributed ratios of labeled and unlabeled molecules. Using this approach we identified novel measles virus and respiratory syncytial virus epitopes as well as infection-induced self-peptides in several cell types, showing that SITE is a unique and versatile method for unequivocal identification of disease-related MHC class I epitopes

    Discovery of Salmonella trehalose phospholipids reveals functional convergence with mycobacteria.

    Get PDF
    Salmonella species are among the world's most prevalent pathogens. Because the cell wall interfaces with the host, we designed a lipidomics approach to reveal pathogen-specific cell wall compounds. Among the molecules differentially expressed between Salmonella Paratyphi and S. Typhi, we focused on lipids that are enriched in S. Typhi, because it causes typhoid fever. We discovered a previously unknown family of trehalose phospholipids, 6,6'-diphosphatidyltrehalose (diPT) and 6-phosphatidyltrehalose (PT). Cardiolipin synthase B (ClsB) is essential for PT and diPT but not for cardiolipin biosynthesis. Chemotyping outperformed clsB homology analysis in evaluating synthesis of diPT. DiPT is restricted to a subset of Gram-negative bacteria: large amounts are produced by S. Typhi, lower amounts by other pathogens, and variable amounts by Escherichia coli strains. DiPT activates Mincle, a macrophage activating receptor that also recognizes mycobacterial cord factor (6,6'-trehalose dimycolate). Thus, Gram-negative bacteria show convergent function with mycobacteria. Overall, we discovered a previously unknown immunostimulant that is selectively expressed among medically important bacterial species

    CD4+ T cell-mediated recognition of a conserved cholesterol-dependent cytolysin epitope generates broad antibacterial immunity

    Get PDF
    CD4+ T cell-mediated immunity against Streptococcus pneumoniae (pneumococcus) can protect against recurrent bacterial colonization and invasive pneumococcal diseases (IPDs). Although such immune responses are common, the pertinent antigens have remained elusive. We identified an immunodominant CD4+ T cell epitope derived from pneumolysin (Ply), a member of the bacterial cholesterol-dependent cytolysins (CDCs). This epitope was broadly immunogenic as a consequence of presentation by the pervasive human leukocyte antigen (HLA) allotypes DPB1∗02 and DPB1∗04 and recognition via architecturally diverse T cell receptors (TCRs). Moreover, the immunogenicity of Ply427–444 was underpinned by core residues in the conserved undecapeptide region (ECTGLAWEWWR), enabling cross-recognition of heterologous bacterial pathogens expressing CDCs. Molecular studies further showed that HLA-DP4-Ply427–441 was engaged similarly by private and public TCRs. Collectively, these findings reveal the mechanistic determinants of near-global immune focusing on a trans-phyla bacterial epitope, which could inform ancillary strategies to combat various life-threatening infectious diseases, including IPDs

    Erratum for Carbonetti <i>et al.</i>, "Highlights of the 11th International Bordetella Symposium: from Basic Biology to Vaccine Development"

    Get PDF
    Este documento es una errata de "Highlights of the 11th International Bordetella Symposium: From basic biology to vaccine development" (ver "Documentos relacionados").Instituto de Biotecnologia y Biologia Molecula

    The SysteMHC Atlas project.

    Get PDF
    Mass spectrometry (MS)-based immunopeptidomics investigates the repertoire of peptides presented at the cell surface by major histocompatibility complex (MHC) molecules. The broad clinical relevance of MHC-associated peptides, e.g. in precision medicine, provides a strong rationale for the large-scale generation of immunopeptidomic datasets and recent developments in MS-based peptide analysis technologies now support the generation of the required data. Importantly, the availability of diverse immunopeptidomic datasets has resulted in an increasing need to standardize, store and exchange this type of data to enable better collaborations among researchers, to advance the field more efficiently and to establish quality measures required for the meaningful comparison of datasets. Here we present the SysteMHC Atlas (https://systemhcatlas.org), a public database that aims at collecting, organizing, sharing, visualizing and exploring immunopeptidomic data generated by MS. The Atlas includes raw mass spectrometer output files collected from several laboratories around the globe, a catalog of context-specific datasets of MHC class I and class II peptides, standardized MHC allele-specific peptide spectral libraries consisting of consensus spectra calculated from repeat measurements of the same peptide sequence, and links to other proteomics and immunology databases. The SysteMHC Atlas project was created and will be further expanded using a uniform and open computational pipeline that controls the quality of peptide identifications and peptide annotations. Thus, the SysteMHC Atlas disseminates quality controlled immunopeptidomic information to the public domain and serves as a community resource toward the generation of a high-quality comprehensive map of the human immunopeptidome and the support of consistent measurement of immunopeptidomic sample cohorts

    Age Distribution of Multiple Functionally Relevant Subsets of CD4+T Cells in Human Blood Using a Standardized and Validated 14-Color EuroFlow Immune Monitoring Tube

    Get PDF
    CD4+ T cells comprise multiple functionally distinct cell populations that play a key role in immunity. Despite blood monitoring of CD4+ T-cell subsets is of potential clinical utility, no standardized and validated approaches have been proposed so far. The aim of this study was to design and validate a single 14-color antibody combination for sensitive and reproducible flow cytometry monitoring of CD4+ T-cell populations in human blood to establish normal age-related reference values and evaluate the presence of potentially altered profiles in three distinct disease models-monoclonal B-cell lymphocytosis (MBL), systemic mastocytosis (SM), and common variable immunodeficiency (CVID). Overall, 145 blood samples from healthy donors were used to design and validate a 14-color antibody combination based on extensive reagent testing in multiple cycles of design-testing-evaluation-redesign, combined with in vitro functional studies, gene expression profiling, and multicentric evaluation of manual vs. automated gating. Fifteen cord blood and 98 blood samples from healthy donors (aged 0-89 years) were used to establish reference values, and another 25 blood samples were evaluated for detecting potentially altered CD4 T-cell subset profiles in MBL (n = 8), SM (n = 7), and CVID (n = 10). The 14-color tube can identify >= 89 different CD4+ T-cell populations in blood, as validated with high multicenter reproducibility, particularly when software-guided automated (vs. manual expert-based) gating was used. Furthermore, age-related reference values were established, which reflect different kinetics for distinct subsets: progressive increase of naive T cells, T-helper (Th)1, Th17, follicular helper T (TFH) cells, and regulatory T cells (Tregs) from birth until 2 years, followed by a decrease of naive T cells, Th2, and Tregs in older children and a subsequent increase in multiple Th-cell subsets toward late adulthood. Altered and unique CD4+ T-cell subset profiles were detected in two of the three disease models evaluated (SM and CVID). In summary, the EuroFlow immune monitoring TCD4 tube allows fast, automated, and reproducible identification of >= 89 subsets of CD4+ blood T cells, with different kinetics throughout life. These results set the basis for in-depth T-cell monitoring in different disease and therapeutic conditions
    corecore